skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Andres Blanco-Ortega"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Andres Blanco-Ortega (Ed.)
    This paper presents an adaptive Fuzzy Sliding Mode Control approach for an Assist-as-Needed (AAN) strategy to achieve effective human–exoskeleton synergy. The proposed strategy employs an adaptive instance-based learning algorithm to estimate muscle effort, based on surface Electromyography (sEMG) signals. To determine and control the inverse dynamics of a highly nonlinear 4-degrees-of-freedom exoskeleton designed for upper-limb therapeutic exercises, a modified Recursive Newton-Euler Algorithm (RNEA) with Sliding Mode Control (SMC) was used. The exoskeleton position error and raw sEMG signal from the bicep’s brachii muscle were used as inputs for a fuzzy inference system to produce an output to adjust the sliding mode control law parameters. The proposed robust control law was simulated using MATLAB-Simulink, and the results showed that it could instantly adjust the necessary support, based on the combined motion of the human–exoskeleton system’s muscle engagement, while keeping the state trajectory errors and input torque bounded within ±5×10−2 rads and ±5 N.m, respectively. 
    more » « less